华秋PCB
高可靠多层板制造商
华秋SMT
高可靠一站式PCBA智造商
华秋商城
自营现货电子元器件商城
PCB Layout
高多层、高密度产品设计
钢网制造
专注高品质钢网制造
BOM配单
专业的一站式采购解决方案
华秋DFM
一键分析设计隐患
华秋认证
认证检测无可置疑
首页>技术中心>详情
内容:在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。
随着切换速度的加快,现代数字系统遇到了一系列难题,例如:信号反射、延迟衰落、串音、和电磁兼容失效等等。当集成电路的切换时间下降到5纳秒或4纳秒或更低时,印刷电路板本身的固有特性开始显现出来。不幸的是,这些特性是有害的,在设计过程中应该尽量设法避开。 在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。1、 串音由何引起?
当信号沿着印刷电路板的布线传播时,其电磁波也沿着布线传播,从集成电路芯片一端传到线的另一端。在传播过程中,由于电磁感应,电磁波引起了瞬变的电压和电流。
电磁波包括随时间变化的电场和磁场。在印刷电路板中,实际上,电磁场并不限制在各种布线内,有相当一部分的电磁场能量存在于布线之外。所以,如果附近有其它线路,当信号沿一根导线传播时,其电场和磁场将会影响到其它线路。根据麦克斯韦尔方程,时变电及磁场会使邻近导产生电压和电流,因此,信号传播过程中伴随的电磁场将会使邻近线路产生信号,这样,就导致了串音。 在印刷电路板中,引起串音的线路通常称为“侵入者”。受串音干扰的线路通常称为“受害者”。在任何“受害者”中的串音信号都可被分为前向串音信号和后向串音信号,这两种信号部分地由于电容耦合和电感耦合引起。串音信号的数学描述是非常复杂的,但是,如同湖面上的高速快艇,前向和后向串音信号的某些量化特徵还是能被人们所理解。
高速快艇对水产生两种影响。首先,快艇在船头激起浪花,弧形的涟漪好像随着快艇一起前进;其次,当快艇行驶一段时间后,会在身后留下长长的水迹。
这很类似于信号通过“侵入者”时,“受害者”的反应。“受害者”中有两种串音信号:位于侵入信号之前的前向信号,像船头的水和涟漪;落后于侵入信号的后向信号,像船开远后仍在湖中的水迹。2、前向串音的电容特性
前向串音表现为两种相互关联的特性:容性和感性。“侵入”信号前进时,在“受害者”中产生与之同相的电压信号,这个信号的速度与“侵入”信号相同,但又始终位于“侵入”信号之前。这意味着串音信号不会提前传播,而是和“侵入”信号同速并耦合入更多的能量。
由于“侵入”信号的变化引起串音信号,所以前向串音脉冲不是单极性的,而是具有正负两个极性。脉冲持续时间等于“侵入”信号的切换时间。导线间的耦合电容决定了前向串音脉冲的幅值,而耦合电容是由许多因素决定的,例如印刷电路板的材料,几何尺寸,线路交叉位置等等。幅值和平行线路间的距离成比例:距离越长,串音脉冲就越大。然而,串音脉冲幅值有一个上限,因为“侵入”信号渐渐地失去了能量,而“受害者”又反过来耦合回“侵入者”。 前向串音的电感特性
当“侵入”信号传播时,它的时变磁场同样会产生串音:具有电感特性的前向串音。但是感性串音和容性串音明显不同:前向感性串音的极性和前向容性串音的极性相反。这因为在前进方向,串音的容性部分和感性部分在竞争,在相互抵消。实际上,当前向容性和感性串音相等时,就不存在前向串音。在许多设备中,前向串音相当小,而后向串音成了主要问题,尤其对于长条形电路板,因为电容耦合增强了。但是,在没有仿真的前提下,实际无法知道感性和容性串音抵消到何种程度。
如果你测到了前向串音,你就可以根据其极性判别你的走线是容性耦合还是感性耦合。如果串音极性和“侵入”信号相同,容性耦合占主要地位,反之,感性耦合占主要地位。在印刷电路板中,通常是感性耦合更强些。
后向串音发生的物理理和前向串音相同:“侵入”信号的时变电场和磁场引起“受害者”中的感性和容性信号。但是这两者之间也有所不同。最大的不同是后向串音信号的持续时间。因为前向串音和“侵入”信号的传播方向及速度相同,所以前向串音的持续时间和“侵入”信号等长。但是,后向串音和“侵入”信号反方向传播,它滞后于“侵入”信号,并引起一长串脉冲。
与前向串音不同,后向串音脉冲的幅值与线路长度无关,其脉冲持续期是“侵入”信号延迟时间的两倍。为什麽呢?假设你从信号出发点观察后向串音,当“侵入”信号远离出发点时,它仍在产生后向脉冲,直到另一个延迟信号出现。这样,后向串音脉冲的整个持续时间就是“侵入”信号延迟时间的两倍。3、后向串音的反射
你可能不关心驱动芯片和接收芯片的串音干扰。然而,你为什麽要关心后向脉冲呢?因为驱动芯片一般是低阻输出,它反射的串音信号多于吸收的串音信号。当后向串音信号到达“受害者”的驱动芯片时,它会反射到接收芯片。因为驱动芯片的输出电阻一般低于导线本身,常常引起串音信号的反射。
与前向串音信号具有感性和容性两种特性不同,后向串音信号只有一个极性,所以后向串音信号就不能自我抵消。后向串音信号及其反射之后的串音信号的极性和“侵入”信号相同,其幅值是两部分之和。
切记,当你在“受害者”的接收端测到后向串音脉冲时,这个串音信号已经经过了“受害者”驱动芯片的反射。你可以观察到后向串音信号的极性和“侵入”信号相反。在数字设计时,你常常关心一些量化指标,例如:不管串音是如何产生,何时产生,前向还是后向的,它的最大噪声容限为150mV。那麽,存在简单的能够精确衡量噪声的方法吗?简单的回答是“没有”,因为电磁场效应太复杂了,涉及到一系列方程,电路板的拓扑结构,芯片的模拟特性等等。
4、 线路长度
很多设计者认为缩短线路长度是降低串音的关键。事实上,几乎所有电路设计软件都提供了最大并行线路的长度控制功能。不幸的是,仅改变几何数值,是很难降低串音的。
因为前向串音受耦合长度影响,所以当你缩短没有耦合关系的线路长度时,串音几乎没有减少。再者,如果耦合长度超过驱动芯片下降或上升时延,耦合长度和前向串音的线性关系会到达一个饱和值,这时,缩短已经很长的耦合线路对减少串音影响甚小。
一个合理的方法是扩大耦合线路间的距离。几乎在所有情况下,分离耦合线路能够大大降低串音干扰。实践证明,后向串音幅值大致和耦合线路间的距离的平方成反比,即:如果你将这个距离增加一倍,串音降低四分之叁。当后向串音占主要地位时,这个效果更加明显。
5、 串音消除
从实践观点出发,最重要的问题是如何去除串音。当串音会影响电路特性时,你该怎麽办?
你可以采取以下两种策略。一种方法是改变一个或多个影响耦合的几何参量,例如:线路长度、线路之间的距离、电路板的分层位置。另一种方法是利用终端,将单线改成多路耦合线。合理的设计,多线终端能够取消大部分串音。
6、隔离难度
要增大耦合线路间的距离并不是很容易的。如果你的布线非常密,你必须花很多精力才能降低布线密度。如果你担心串音干扰,你可以增加一或二个隔离层。如果你必须扩大线路或网络间的距离,那麽你最好拥有一个便于操作的软件。线路宽度和厚度同样影响串音干扰,但是其影响远小于线路的距离因素。所以,一般很少调整这两个参量。
因为电路板的绝缘材料存在介电常数,也会产生线路间的耦合电容,所以降低介电常数也可减少串音干扰。这个效果并不很明显,特别是微带电路 部分介电质已经是空气了。更重要的是,改变介电常数并不那麽容易,特别是在昂贵的设备中。一个变通的办法是采用较贵的材料,而不是FR-4。
介电质厚度,很大长度上影响了串音干扰。一般的,使布线层靠近电源层(Vcc或地),能够降低串音干扰。改善效果的精确数值需要通过仿真来确定。7、分层因素
一些印刷电路板设计者仍然不注意分层方法,这在高速电路设计中是个重大失误。分层不但影响传输线的性能,例如:阻抗、延迟和耦合,而且电路工作易于失常,甚至改变。例如,通过减少5mil的介电质厚度来降低串音干扰,这是不可以的,虽然在成本和工艺上都能做到。
另外一个容易忽略的因素是层的选择。很多时候,前向串音是微带电路中的主要串音干扰。但是,如果设计合理,布线层位于两个电源层之间,这样就很好地平衡了容性耦合和感性耦合,具有较低幅值的后向串音便成为主要因素。所以,仿真时你必须注意,是哪种串音干扰占主要地位。
布线和芯片的位置关系对串音也有影响。因为后向串音到达接收芯片后反射到驱动芯片,所以驱动芯片的位置和性能是非常重要的。因为拓扑结构的复杂性,反射及其它因素,所以很难解释串音主要受谁影响。如果有多种拓扑结构供选择,最好通过仿真来确定哪种结构对串音影响最小。
一个可能减少串音的非几何因素是驱动芯片本身的技术指标。一般原则是,选择切换时间长的驱动芯片,以减少串音干扰(解决很多其它由于高速引起的问题也如此)。即使串音不严格地和切换时间成正比,降低切换时间仍然会产生重大影响。许多时候,你对驱动芯片技术无法选择,你只能改变几何参量来达到目的。 通过终端降低串音
众所周知,一根独立、无耦合传输线的终端连接匹配阻抗,它就不会产生反射。现在考虑一系列耦合的传输线,例如,叁根互相有串音的传输线,或一对耦合传输线。如果利用电路分析软件,可以导出一对矩阵,分别表示传输线本身和相互间的电容和电感。例如,叁根传输线可能有下列的C和L矩阵:
在这些矩阵中,对角线元素是传输线自身值,非对角线元素是传输线相互间的值。(注意它们是用每单位长度的pF和nH来表示的)。可以用精良的电磁场测试仪来确定这些值。
可以看出,每一组传输线也有一个特徵阻抗矩阵。在这个Z0矩阵中,对角线元素表示传输线对地线的阻抗值,非对角线元素是传输线耦合值。对于一组传输线,与单根传输线类似,如果终端是与Z0匹配的阻抗阵,它的矩阵几乎是相同的。所需的阻抗不必是Z0中的值,只要组成的阻抗网络与Z0匹配就行。阻抗阵中不仅包括传输线对地的阻抗,而且包括传输线之间的阻抗。
这样的一个阻抗阵具有良好的性质。首先它可以阻止非耦合线中串音的反射。更重要的是,它可以消除已经形成的串音。8、致命武器
可惜的是,这样一个终端是昂贵的,而且是不可能理想实现的,因为一些传输线之间的耦合阻抗太小了,会导致大电流流入驱动芯片。传输线和地之间的阻抗也不能太大以致于不能驱动芯片。如果存在这些问题,而你还打算利用这类终端,加几个交流耦合电容试试看。
尽管实现中存在一些困难,阻抗阵列终端仍是对付信号反射和串音的致命武器,特别对于恶劣情况。在其它环境下,它可能起作用,也可能不起作用,但仍不失为一种值得推荐的方法。
****************************************************************************
高速PCB设计指南之一:PCB基本概念
高速PCB设计指南之二:避免混合讯号系统的设计陷阱
高速PCB设计指南之三:信号隔离技术
高速PCB设计指南之五:DSP系统的降噪技术
高速PCB设计指南之六:PowerPCB在PCB设计中的应用技术
高速PCB设计指南之七:PCB互连设计中如何降低RF效应
高速PCB设计指南之八:PCB的可靠性设计
高速PCB设计指南之九:如何掌握IC封装的特性
高速PCB设计指南之十:特性阻抗问题
高速PCB设计指南十一:如何改善可测试性
下一篇:高速PCB设计指南之四:高速数字系统的串音控制
自定义数量数量需为50的倍数,且大于10㎡
近期更新
查看全部>
新闻中心
扫描二维码咨询客户经理
关注华秋电路官方微信
实时查看最新订单进度
联系我们:
工作时间:
内容:在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。
随着切换速度的加快,现代数字系统遇到了一系列难题,例如:信号反射、延迟衰落、串音、和电磁兼容失效等等。当集成电路的切换时间下降到5纳秒或4纳秒或更低时,印刷电路板本身的固有特性开始显现出来。不幸的是,这些特性是有害的,在设计过程中应该尽量设法避开。 在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。
1、 串音由何引起?
当信号沿着印刷电路板的布线传播时,其电磁波也沿着布线传播,从集成电路芯片一端传到线的另一端。在传播过程中,由于电磁感应,电磁波引起了瞬变的电压和电流。
电磁波包括随时间变化的电场和磁场。在印刷电路板中,实际上,电磁场并不限制在各种布线内,有相当一部分的电磁场能量存在于布线之外。所以,如果附近有其它线路,当信号沿一根导线传播时,其电场和磁场将会影响到其它线路。根据麦克斯韦尔方程,时变电及磁场会使邻近导产生电压和电流,因此,信号传播过程中伴随的电磁场将会使邻近线路产生信号,这样,就导致了串音。
在印刷电路板中,引起串音的线路通常称为“侵入者”。受串音干扰的线路通常称为“受害者”。在任何“受害者”中的串音信号都可被分为前向串音信号和后向串音信号,这两种信号部分地由于电容耦合和电感耦合引起。串音信号的数学描述是非常复杂的,但是,如同湖面上的高速快艇,前向和后向串音信号的某些量化特徵还是能被人们所理解。
高速快艇对水产生两种影响。首先,快艇在船头激起浪花,弧形的涟漪好像随着快艇一起前进;其次,当快艇行驶一段时间后,会在身后留下长长的水迹。
这很类似于信号通过“侵入者”时,“受害者”的反应。“受害者”中有两种串音信号:位于侵入信号之前的前向信号,像船头的水和涟漪;落后于侵入信号的后向信号,像船开远后仍在湖中的水迹。
2、前向串音的电容特性
前向串音表现为两种相互关联的特性:容性和感性。“侵入”信号前进时,在“受害者”中产生与之同相的电压信号,这个信号的速度与“侵入”信号相同,但又始终位于“侵入”信号之前。这意味着串音信号不会提前传播,而是和“侵入”信号同速并耦合入更多的能量。
由于“侵入”信号的变化引起串音信号,所以前向串音脉冲不是单极性的,而是具有正负两个极性。脉冲持续时间等于“侵入”信号的切换时间。
导线间的耦合电容决定了前向串音脉冲的幅值,而耦合电容是由许多因素决定的,例如印刷电路板的材料,几何尺寸,线路交叉位置等等。幅值和平行线路间的距离成比例:距离越长,串音脉冲就越大。然而,串音脉冲幅值有一个上限,因为“侵入”信号渐渐地失去了能量,而“受害者”又反过来耦合回“侵入者”。 前向串音的电感特性
当“侵入”信号传播时,它的时变磁场同样会产生串音:具有电感特性的前向串音。但是感性串音和容性串音明显不同:前向感性串音的极性和前向容性串音的极性相反。这因为在前进方向,串音的容性部分和感性部分在竞争,在相互抵消。实际上,当前向容性和感性串音相等时,就不存在前向串音。
在许多设备中,前向串音相当小,而后向串音成了主要问题,尤其对于长条形电路板,因为电容耦合增强了。但是,在没有仿真的前提下,实际无法知道感性和容性串音抵消到何种程度。
如果你测到了前向串音,你就可以根据其极性判别你的走线是容性耦合还是感性耦合。如果串音极性和“侵入”信号相同,容性耦合占主要地位,反之,感性耦合占主要地位。在印刷电路板中,通常是感性耦合更强些。
后向串音发生的物理理和前向串音相同:“侵入”信号的时变电场和磁场引起“受害者”中的感性和容性信号。但是这两者之间也有所不同。
最大的不同是后向串音信号的持续时间。因为前向串音和“侵入”信号的传播方向及速度相同,所以前向串音的持续时间和“侵入”信号等长。但是,后向串音和“侵入”信号反方向传播,它滞后于“侵入”信号,并引起一长串脉冲。
与前向串音不同,后向串音脉冲的幅值与线路长度无关,其脉冲持续期是“侵入”信号延迟时间的两倍。为什麽呢?假设你从信号出发点观察后向串音,当“侵入”信号远离出发点时,它仍在产生后向脉冲,直到另一个延迟信号出现。这样,后向串音脉冲的整个持续时间就是“侵入”信号延迟时间的两倍。
3、后向串音的反射
你可能不关心驱动芯片和接收芯片的串音干扰。然而,你为什麽要关心后向脉冲呢?因为驱动芯片一般是低阻输出,它反射的串音信号多于吸收的串音信号。当后向串音信号到达“受害者”的驱动芯片时,它会反射到接收芯片。因为驱动芯片的输出电阻一般低于导线本身,常常引起串音信号的反射。
与前向串音信号具有感性和容性两种特性不同,后向串音信号只有一个极性,所以后向串音信号就不能自我抵消。后向串音信号及其反射之后的串音信号的极性和“侵入”信号相同,其幅值是两部分之和。
切记,当你在“受害者”的接收端测到后向串音脉冲时,这个串音信号已经经过了“受害者”驱动芯片的反射。你可以观察到后向串音信号的极性和“侵入”信号相反。
在数字设计时,你常常关心一些量化指标,例如:不管串音是如何产生,何时产生,前向还是后向的,它的最大噪声容限为150mV。那麽,存在简单的能够精确衡量噪声的方法吗?简单的回答是“没有”,因为电磁场效应太复杂了,涉及到一系列方程,电路板的拓扑结构,芯片的模拟特性等等。
4、 线路长度
很多设计者认为缩短线路长度是降低串音的关键。事实上,几乎所有电路设计软件都提供了最大并行线路的长度控制功能。不幸的是,仅改变几何数值,是很难降低串音的。
因为前向串音受耦合长度影响,所以当你缩短没有耦合关系的线路长度时,串音几乎没有减少。再者,如果耦合长度超过驱动芯片下降或上升时延,耦合长度和前向串音的线性关系会到达一个饱和值,这时,缩短已经很长的耦合线路对减少串音影响甚小。
一个合理的方法是扩大耦合线路间的距离。几乎在所有情况下,分离耦合线路能够大大降低串音干扰。实践证明,后向串音幅值大致和耦合线路间的距离的平方成反比,即:如果你将这个距离增加一倍,串音降低四分之叁。当后向串音占主要地位时,这个效果更加明显。
5、 串音消除
从实践观点出发,最重要的问题是如何去除串音。当串音会影响电路特性时,你该怎麽办?
你可以采取以下两种策略。一种方法是改变一个或多个影响耦合的几何参量,例如:线路长度、线路之间的距离、电路板的分层位置。另一种方法是利用终端,将单线改成多路耦合线。合理的设计,多线终端能够取消大部分串音。
6、隔离难度
要增大耦合线路间的距离并不是很容易的。如果你的布线非常密,你必须花很多精力才能降低布线密度。如果你担心串音干扰,你可以增加一或二个隔离层。如果你必须扩大线路或网络间的距离,那麽你最好拥有一个便于操作的软件。线路宽度和厚度同样影响串音干扰,但是其影响远小于线路的距离因素。所以,一般很少调整这两个参量。
因为电路板的绝缘材料存在介电常数,也会产生线路间的耦合电容,所以降低介电常数也可减少串音干扰。这个效果并不很明显,特别是微带电路 部分介电质已经是空气了。更重要的是,改变介电常数并不那麽容易,特别是在昂贵的设备中。一个变通的办法是采用较贵的材料,而不是FR-4。
介电质厚度,很大长度上影响了串音干扰。一般的,使布线层靠近电源层(Vcc或地),能够降低串音干扰。改善效果的精确数值需要通过仿真来确定。
7、分层因素
一些印刷电路板设计者仍然不注意分层方法,这在高速电路设计中是个重大失误。分层不但影响传输线的性能,例如:阻抗、延迟和耦合,而且电路工作易于失常,甚至改变。例如,通过减少5mil的介电质厚度来降低串音干扰,这是不可以的,虽然在成本和工艺上都能做到。
另外一个容易忽略的因素是层的选择。很多时候,前向串音是微带电路中的主要串音干扰。但是,如果设计合理,布线层位于两个电源层之间,这样就很好地平衡了容性耦合和感性耦合,具有较低幅值的后向串音便成为主要因素。所以,仿真时你必须注意,是哪种串音干扰占主要地位。
布线和芯片的位置关系对串音也有影响。因为后向串音到达接收芯片后反射到驱动芯片,所以驱动芯片的位置和性能是非常重要的。因为拓扑结构的复杂性,反射及其它因素,所以很难解释串音主要受谁影响。如果有多种拓扑结构供选择,最好通过仿真来确定哪种结构对串音影响最小。
一个可能减少串音的非几何因素是驱动芯片本身的技术指标。一般原则是,选择切换时间长的驱动芯片,以减少串音干扰(解决很多其它由于高速引起的问题也如此)。即使串音不严格地和切换时间成正比,降低切换时间仍然会产生重大影响。许多时候,你对驱动芯片技术无法选择,你只能改变几何参量来达到目的。 通过终端降低串音
众所周知,一根独立、无耦合传输线的终端连接匹配阻抗,它就不会产生反射。现在考虑一系列耦合的传输线,例如,叁根互相有串音的传输线,或一对耦合传输线。如果利用电路分析软件,可以导出一对矩阵,分别表示传输线本身和相互间的电容和电感。例如,叁根传输线可能有下列的C和L矩阵:
在这些矩阵中,对角线元素是传输线自身值,非对角线元素是传输线相互间的值。(注意它们是用每单位长度的pF和nH来表示的)。可以用精良的电磁场测试仪来确定这些值。
可以看出,每一组传输线也有一个特徵阻抗矩阵。在这个Z0矩阵中,对角线元素表示传输线对地线的阻抗值,非对角线元素是传输线耦合值。
对于一组传输线,与单根传输线类似,如果终端是与Z0匹配的阻抗阵,它的矩阵几乎是相同的。所需的阻抗不必是Z0中的值,只要组成的阻抗网络与Z0匹配就行。阻抗阵中不仅包括传输线对地的阻抗,而且包括传输线之间的阻抗。
这样的一个阻抗阵具有良好的性质。首先它可以阻止非耦合线中串音的反射。更重要的是,它可以消除已经形成的串音。
8、致命武器
可惜的是,这样一个终端是昂贵的,而且是不可能理想实现的,因为一些传输线之间的耦合阻抗太小了,会导致大电流流入驱动芯片。传输线和地之间的阻抗也不能太大以致于不能驱动芯片。如果存在这些问题,而你还打算利用这类终端,加几个交流耦合电容试试看。
尽管实现中存在一些困难,阻抗阵列终端仍是对付信号反射和串音的致命武器,特别对于恶劣情况。在其它环境下,它可能起作用,也可能不起作用,但仍不失为一种值得推荐的方法。
****************************************************************************
高速PCB设计指南之一:PCB基本概念
高速PCB设计指南之二:避免混合讯号系统的设计陷阱
高速PCB设计指南之三:信号隔离技术
高速PCB设计指南之五:DSP系统的降噪技术
高速PCB设计指南之六:PowerPCB在PCB设计中的应用技术
高速PCB设计指南之七:PCB互连设计中如何降低RF效应
高速PCB设计指南之八:PCB的可靠性设计
高速PCB设计指南之九:如何掌握IC封装的特性
高速PCB设计指南之十:特性阻抗问题
高速PCB设计指南十一:如何改善可测试性
下一篇:高速PCB设计指南之四:高速数字系统的串音控制