首页>技术中心>详情

高速PCB设计指南之二:避免混合讯号系统的设计陷阱

时间2015/03/07
人物Levi
评论0
查看者6953

摘要:要想成功的运用现在的SOC,板级和系统级设计师必须了解如何最好地放置元件,布置走线,以及利用保护元件。

它们被称为数码式蜂窝电话,但其中所包含的模拟功能,比较起所谓的模拟蜂窝电话之前度品种还要多。事实上,需要处理连续状态值(例如语音,影像,温度,压力等)的任何系统,都会有它的模拟功能,那怕是在其名字里出现数码式这个词语。今天的多媒体PC也毫无例外,它们有着语音和影像的输入和输出,对发热的中央处理机进行迫切的温度监示,以及高性能调制解调器,这些系统同样地,其混合讯号功能清单上的项目也愈来愈多。

两种系统的趋势对於进行混合设计的人们来说,又带来了新的挑战。便携式通讯和运算器件的体积重量不断减少,但又不断地推高功能。而桌面系统又不断提高中央处理机能力和通讯周边的速度。肯定的是,在设计现代的数码电路板同时又要避免振铃、噪声引致的差错,和地电位跳动等问题,实在相当困难的。但是,当你添加那些易受噪声影响的模拟讯号线路逼近於方波激励的数码式数据线路,问题更为严重。

在芯片级,现时的SOC(芯片上的系统)需要有逻辑电路、模拟电路,以及热动力学设计方面的专才。要成功地使用这些IC,板级和系统级设计师需要了解如何最好地放置元件,布置走线,以及利用保护元件。

本文讲述的是现时混合讯号系统设计中的常见陷阱,并提供一些指引以清除或移开它们。不过,在探讨特定问题和作出提议之前,先详细看看系统设计的两种潮流—小型化和高速化—如何影响这些问题,会有很大的帮助。


1、 “高速化”趋势

将1999年中档PC的规格与五年前的相比较,它的中央处理机速度提高了大约一个数量级,而由CPU消耗的电流也提高了约一个数量级。当你将高速度和大电流结合一起,V=L(di/dt)关系式中的“di/dt”部份大幅地提高。事实上,电路板中半寸长的地线可能会感应起超过1伏特的电压於其上。对於转换器来说,地电位参考线会感应电压的话,可能导致运作停止。 

为要达致这些更高的速度,IC在设计和制造上都采用深度次微米尺寸(例如0.35μm)。这虽然缩减了几何尺寸而得到快得多的性能,但也会令这些器件更容易招致锁上(latch-up)及由瞬变引起的损害。而且,这些器件也要求更紧逼的能源管理以符合愈来愈严格的允许电压范围。

现时的10/100Ethernet网络介面卡(NIC)就是良好的例子,原来的10Base-T芯片是大尺寸的CMOS器件,对於过电压损坏相对地是不那麽敏感的。然而,新型的芯片采用了0.35μm的线宽,对於锁上以及因瞬变而失效非常敏感—因电能引致和雷电引致的瞬变。

现代的服务器,具有SMP(对称多处理能力)的体系结构,以及CPU以500MHz或以上的频率来运作,就是能源分布挑战方面的好例子。你不可以简单地建造一个5V电源并把布线引到相应的总线。以500MHz上限达20A或30A的电流开关,它要求於每个使用点(point-of-use)实际上有独立的转换器,还加上一个更大的一级电压源对这些转换器的全部进行供电。
趋势要求具有热交换(hotswap)的能力,意味着你要能做到在现用系统里插入或除下电路板。这样做也是预告会有瞬变产生的。如此一来,无论插入的板抑或主板都必须有适当的保护作用。

无论小型化或高速化的趋势都有其独特的问题。例如,大电流能源分布对於小型、便携、手持式设备来说,就不是个大问题。而对於桌面电脑和服务器来说,延长的电池寿命也不会成为问题。不过,锁上和瞬变引致的损坏,在上述两方面都成为问题。


2、 “小型化”的趋势

拿1999年的蜂窝电话与五年前的产品作个比较,芯片数目少得很多,重量和体积大幅减少,电池寿命大幅延长。在这个进程中,主要因素是混合讯号IC解决方案中有很大进展。不过,随着芯片几何尺寸的缩减,电路板上布线的间距趋近,物理学的规律开始呈现出来。

并行的走线愈来愈接近产生了愈来愈大寄生电容耦合,而这简直是和距离平方成反比关系的结果,以前只有少数几根走线的空间,现在纳入了许多走线,结果,甚至是不相邻的走线之间的电容性耦合也会构成问题。

蜂窝电话,由其性质所决定,是被人拿着使用的设备。在低温度的日子里,你正在地毯上走来走去,然後拿起蜂窝电话,接着“啪”—这就会把一个高电压,静电放电(ESD)脉冲传到这个设备那里。如果没有适当的ESD保护,一个或多个IC有可能受到损坏。不过,增添外部元件来保护ESD的破坏又会与小型化趋势相违背。

另一个问题是能源管理,蜂窝电话用户希望电池的两次充电之间隔愈长愈好。这意味着DC-至-DC转换器必须是很高效率的。开关技术是它的答案,但在此情况下,转换器也成了它自己的潜在噪声源。所以必须小心选择、放置转换器,也要小心进行互连。还有,由於体积是不可忽视的因素,应该选择可以采用物理尺寸最小的无源元件的那种部件。如果采用线性稳压器的话,应该挑选超低压差式的,可让输出维持於最小电池电压。这就能让电池不再提供足够电能之前尽行地放电。


3、锁上和瞬变

对深度次微米IC从线宽的瞬变恶化了关於过电压状态的敏感性,意味着你要聪明一点,对这些器件进行保护,但同时又不要影响它们的性能。

在一个保护输入里,任何保护元件於正常运作下都必须呈现为一个高阻抗电路。它必须加载尽可能小的电容负荷,例如,假定它是对正常输入讯号加入小小效应的话。不过,在过电压的一瞬间,那同一个器件必须成为该瞬变电能的主要通路,将它从受保护器件的输入中引开。还有,保护器件的承受电压应该高於它保护的引脚上的最大允许电压。同理,它的箝位电压要足够低,以防止受保护器件的损坏,这是由於在瞬变情况下,输入上的电压会是保护器件的箝位电压。 

以前,瞬变电压抑制(TVS)二极管在印刷电路板上有效地将瞬变箝位。传统的(TVS)二极管是固态PN结器件,低至5V的电压也工作得很好。它们有快速的响应时间,低的箝位电压,高的电流浪涌能力—全都是所希望的特性。不过,传统TVS二极管的问题是低於5V以下会抬起它的头。在这里,它们所采用的雪崩技术是个障碍。要在5V以下达致Stand-off电压,要采用高度的掺杂(在1018/cm-3或以上)。这反过来,又会引致更高的电容和漏电电流,两者都会损害高性能的。传统的TVS二极管具有电压相关的电容,随电压减少而增加。例如,在5V下,典型的ESD保护二极管会有400pF的结电容。我们可以想像一下,这样的电容性负载加於100Base-TEthernet发射器或接收器的输入节点,或加於通用串行总线(USB)输入,会有甚麽问题。而且,这些正正是最需要进行瞬变保护的那些电路类型。

低于5V电压的情况下,传统的TVS二极管并非真正的选项。但这也不是说你再无可选择的了。由加州伯克莱大学和Semtech公司(加州NewburyPark市)共同开发的一种新技术,提供了一直低至2.8V工作电压的瞬变和ESD保护。你可以在一系列的TVS器件中去选定一种,具有合适的电容,stand-off电压,和箝位电压来符合自己系统的要求。之後,还要考虑应把该器件放在板上的甚麽地方,如何给电路板布线等问题。

在保护通路中的寄生电感会引起高电压的过冲及令IC损坏。在快速上升时间瞬变的情况尤甚,例如ESD。由ESD感应起的瞬变,据IEC1000-4-2的定义,会在不到1纳秒(ns)内到达它的峰值。以走线电感20nH/寸来计算,4份1寸走线自10A脉冲会引起50V的过冲。

你必须考虑所有可能的感应通路,包括地线返回通路,在TVS和保护线路之间的通路,以及由连接器至TVS器件的通路。而且,TVS器件应该尽可能地靠近连接器放置,以便将瞬变耦合到靠近的其他走线。

一块10/100Ethernet板是需要进行瞬变保护的子系统。在Ethernet交换器和路由器中所用的器件是暴露在高能量,雷电感应瞬变之下的。而所用的深度次微米IC在设计上对过电压锁上又是极度敏感的。在典型系统里,每个端口所用的双绞线对介面由两个不同的讯号对所组成—一对用於发射器,另一对用於接收器。发射器输入通常是最容易受到损坏的,在一个线路对中会出现有差异的致命性放电,并且透过变压器以电容性地耦合到EthernetIC。

有一种情况是,讯号频率很高(100Mbit/s)而供电电压又低(典型是3.3V),保护器件必须有很低的容性负载,而其stand-off电压远低於5V。还有另一种情况,其中在保护通路中的寄生电感可以导致很大的电压过冲。为使效率提到最高,电路板的布线应该是,保护器和受保护线路之间的通路必须减至最低,而在RJ45连接器和保护器之间的通路长度也减至最低。


4、热交换/即插即用

越来越多的系统其设计是,在系统仍然加电期间,允许插板或插头随时插入和拔除。那些插板或插头会插入到或拔除自带有讯号,电源线和地线的插座,而且有很高机会产生瞬变。此外,该系统还能够动态地调整其电源,以适应突然增加或减少的电流负载。

蜂窝电话或其他可携电子设备会无心地带电期间插入到或拔除自充电的系统。这同样也会产生瞬变。在这里,除了瞬变保护之外,还需要有能源管理以适应突然增加或减少的电流负载。
USB介面的设计,是给桌面系统与周边设备之间,提高一种高速的串行介接能力。还有,UB介面有一根电压供电线,可用来给连接着的周边设备供电。如果没有负载插入到USB插座里,它就是个开路的插座。由人体静电对该插座感应的ESD脉冲放电,会导通至电路板上,并会轻易地损坏USB控制器。

你必须确保这种高速总线里,无论数据线抑或电源线都采取了保护。并且,尽管能源管理已被写入到USB的规格中,但ESD的保护却还没有。

TVS器件可以用来提供适当的ESD保护。元件的放置和通路的长度仍然是重要的设计问题。同样的排布指南应该仔细参详。务令TVS和受保护线之间的通路变短,并且务令TVS器件尽可能靠近端口连接器。

按照USB规格的需要,应该采用固体电路能源分发开关器进行能源管理。在PC主机中,它们提供短路电流保护和差错报告给控制器IC。在USB周边设备中,它们用来进行端口切换,差错报告和供电电压斜降控制。


5、 能源分配

如果将PC的电流量变化与10年前的相比,增幅之大实在令人惊诧。再加上时钟频率的大幅增加,使得PC和服务器处於极高的di/dt环境之下。例如,若L为2.5μH及C等於4×1500μF,在负载上的瞬变其数量级为200mV峰对峰值,恢复时间50微秒。使问题更复杂的还有令CPU进入睡眠之类的模式,然後迅速地唤醒起来,所产生的瞬变是每微秒20至30A的范围,因而变成为能源管理上的头痛问题。

从转换器观点来看,di/dt的值左右了对输出电容的选择,更特定地是电容的等效串联电阻(ESR)和等效串联电感(ESL)。低频运作的转换器需要用大的电容量来存储两个工作周期之间的电荷,这就要采用电解电容。这些电解电容虽然有很大的电容量,但随之而来也有大的ESR和ESL,两者都有违设计者心意的。此外,电解电容体积很大,不适合於表面安装技术和紧凑的封装。

有一种代替的办法可以降低ESR和ESL的值,简化生产过程,减少实际体积。方法是采用稍高频率的转换器,你就可以选择陶瓷电容来代替电解电容,并且得到上述的优点。同时,藉着采用多相转换器的方案,你更可将负载需求分担开来,每个转换器只需较少的输入电容,同时又能提供相同总量的电流能力。它的另一个优点是降低了输入纹波电流。在单相转换方案中,输入纹波电流等於输出的纹波电流之半。由此,对20A系统而言,其输入纹波电流是10A。但是,对於四相转换器方案,例如说,就会在这四个转换器中平分这种输出电流。现在每个供电为5A,而它们的输入纹波电流为2A。这就可以采用更小型,更便宜的输入电容器。

DellComputers公司(德州RoundRock市)替它的高速电脑和服务器系列开发了一种分立式,多相脉宽调制(PWM)控制器和反向DC-to-DC转换器。其设计是要符合Intel公司的高级PentiumCPU之紧迫电能/能源管理的要求。该电路自此已由Semtech公司应Dell的要求加以集成起来。采取了多相控制器和转换器的方案之後,你就要特别注意电路板的布线问题。高频下的大电流开关会影响地平面有电压的差异。

电路的大电流部份应该先行布线,你应该采用地平面(groundplate),或应该引入隔离或半隔离地平面区域,限制地电流进入特定区域。由输入电容器和高端及低端驱动器输出FET形成的回路包含了全部大电流,快速瞬变开关。连接上应宽即宽及应短则短,以减少回路电感。这样做就会降低电磁干扰(EMI),降低地注入的电流,并将源振铃减至最小以得到更可靠的门电路开关讯号。

在上述两个FET接合点与输出电感器之间的连接,应该是宽的径迹,同时尽可能地短。输出电容器应该尽可能靠近负载放置。快速瞬变负载电流是由这个电容器提供的,所以,连接线应该既宽且短,以便把电感和电阻减至最小。

控制器最好置於宁静地平面区域内,避免输入电容器和FET回路中的脉冲电流流入这个区域。高低端地电位参考引脚应该返回到极接近控制放大器封装的地那里。小讯号模拟地和数码地应该连接到其中一个输出电容器的地端。决不可以返回到在输入电容/FET回路内部的地。电流感测电阻回路应该保持尽可能的短。


6、 聪明地工作

虽然上面的例子说明了一些方法,可预知和避免混合讯号系统的某些陷阱,但这决不是巨细无遗的。每个系统都有其自己的挑战事项,而每个设计师都有其独特的障碍要跳越。无论对付的是更困难的保护,或更严格的能源管理,选择恰当的元件是首先进行的事情。在挑战转换器,转换器控制器和TVS保护器件方面,有很广泛的选择范围。把它们放置於电路板上的正确地方就会显出能源管理和保护方面有效与否的差别。深思熟虑的布线和地平面的配置则是第叁方面的关键问题。 用於低压电路的TVS

电压低於5V时,传统的PN结型TVS实际上完全不起作用。不过,有一种增强式穿通二极管(EPD),由加州柏克莱大学和Semtech公司研制出来。

和雪崩式TVS二极管传统的PN结构不同,这种EPD器件采用了更复杂的n+p+p-n+四层结构。它在p+和P-层采用轻掺杂,防止反向偏置的n+p+结会进入雪崩状态。

选择npn结构而不是pnp结构,是因为它有更高的电子迁移率和改进的箝位特性。藉着小心架构制造P-基区,结果得到的器件於2.8V至3.3V电压范围内,取得了出色的漏电,箝位和电容特性。

7、饱胃口极大的Pentium

Intel的PentiumⅡ规格里,要求在500ns内电流由5A增高至20A,转换率为每微秒30A。而SemteckSC1144多相PWM控制器的能力还胜於任务所要求的。它提供了对多达四个反向DC-to-DC转换器的控制,得到所需的速度和精度。内建的5位元DAC可让输出电压作编程输出,由1.8至2.05V按50mV增量进行,由20至3.5V按100mV增量进行。

这种多相技术产生了由90度相移分开的四个精确输出电压。然後,这四个经数码式相移的输出一起求和,以得到所需的输出电压和电流容量。

以每个转换器工作於2MHz来看,设计师可以采用陶瓷电容而非电解电容,并且得到体积小,可表面安装,以及更低的ESR和ESL的好处。


******************************************************************************

高速PCB设计指南之一:PCB基本概念

高速PCB设计指南之三:信号隔离技术

高速PCB设计指南之四:高速数字系统的串音控制

高速PCB设计指南之五:DSP系统的降噪技术

高速PCB设计指南之六:PowerPCB在PCB设计中的应用技术

高速PCB设计指南之七:PCB互连设计中如何降低RF效应

高速PCB设计指南之八:PCB的可靠性设计

高速PCB设计指南之九:如何掌握IC封装的特性

高速PCB设计指南之十:特性阻抗问题

高速PCB设计指南十一:如何改善可测试性


评论

扫描二维码咨询客户经理

关注华秋电路官方微信

华秋电路微信公众账号

实时查看最新订单进度

联系我们:

0755-83688678

工作时间:

周一至周五(9:00-12:00,13:30-18:30)节假日除外